STUDIO A Studio Associato di Ingegneria ed Architettura

Ing. Giuseppe Ferri Ing. Marco Forlivesi Arch. Marco Arlotti Geom. Matteo Forlivesi Geom. Daniele De Carli

47900 Rimini - Via Covignano nº 221/a - Tel. 0541/752307 - Fax 0541/751004 - P.Iva 02656520406 - e-mail: info@studioa.ws

PROVINCIA DI RIMINI COMUNE DI RIMINI

PIANO PARTICOLAREGGIATO CONSORTILE "PADULLI"

Zona C5 di espansione del P.R.G. Vigente

COMMITTENTE:

PROGETTISTA:

- Ing. GIUSEPPE FERRI

COLLABORATORI:

- Arch. CRISTIAN MARZOLI

- Geom. STEFANO VALLONI

Tav. 18

ALLEGATO 2
Relazione geologica

GENNAIO 2006

COMUNE DI RIMINI

(Provincia di Rimini)

INDAGINE GEOLOGICA SULL'AREA INTERESSATA

DAL PIANO PARTICOLAREGGIATO CONSORTILE

PADULLI

ZONA C5 DI ESPANSIONE DEL P.R.G. VIGENTE

Progettista:

Dott. Ing. Giuseppe Ferri

Relazione Geologica

DATA: Marzo 2003	ARCHIVIO N°: 230402	
		Dott. geol. R. Romagna

COMUNE DI RIMINI (Provincia di Rimini)

INDAGINE GEOLOGICA SULL'AREA
INTERESSATA DAL PIANO
PARTICOLAREGGIATO CONSORTILE PADULLI
ZONA C5 DI ESPANSIONE DEL P.R.G.
VIGENTE

Progettista:
Dott. Ing. Giuseppe Ferri

RELAZIONE GEOLOGICO-GEOTECNICA

1 PREMESSE:

Su incarico del progettista e per conto della proprietà si è effettuata un'indagine geologica nell'area interessata dal Piano Particolareggiato in oggetto allo scopo di:

 definirne le caratteristiche geologiche, geomorfologiche e litostratigrafiche;

> C.S.G. consulenze e servizi geologico-geotecnici dott. Roberto Romagna Viale della Vittoria 77 – 61011 Gabicce Mare (PS) tel./fax 0541/ 967181

- caratterizzare geotecnicamente i terreni indagati,
- valutare le caratteristiche idrogeologiche e sismiche delle litofacies presenti.

A tal fine ci si è avvalsi di uno studio bibliografico preliminare, di un rilievo di campagna e di indagini dirette mediante l'esecuzione di n° 10 prove penetrometriche statiche con il prelievo di n° 2 campioni per le analisi di laboratorio; i risultati ottenuti sono stati correlati con altri sondaggi eseguiti dallo scrivente in aree limitrofe.

A fine relazione sono riportati i diagrammi delle prove penetrometriche effettuate insieme a:

- stralcio della Carta Geologica d'Italia alla scala 1:100.000,
- inquadramento generale in scala 1:25.000.

In appendice "A" si allegano i risultati delle analisi di laboratorio.

Fanno parte integrante del presente lavoro:

ALLEGATO 1 - Planimetria con ubicazione sondaggi in scala 1:1000;

ALLEGATO 2 - Sezioni con ricostruzione litostratigrafica.

Il presente lavoro è redatto in conformità alla normativa vigente (D.M.LL.PP. 11-3-88 e D.M. 3-03-1975).

2 **INQUADRAMENTO GENERALE:**

2.1 Ubicazione:

La zona in esame è posta a Sud ovest del centro abitato di Rimini immediatamente a nord dell'Autostrada Bologna Ancona. Si sviluppa lungo via Padulli ed è inserita nel Foglio n° 101 della Carta d'Italia e nella Tavoletta III° S.O. alla scala 1:25.000.

L'area che nel suo complesso ricopre una estensione di circa 30 ha è in parte già edificata ed interessa i Fogli di mappa n° 82 e 92 del comune di Rimini.

2.2 Geomorfologia:

Morfologicamente, l'intero sito di indagine è ubicato su di un'area pianeggiante, che caratterizza la piana alluvionale di origine continentale, in destra orografica del F. Marecchia, ad una distanza di circa 1,0 Km dalla sponda del fiume ed in prossimità del fosso Padulli. L'area è posta ad una quota di circa 15 m. s.l.m.

Alcune centinaia di metri più a sud la morfologia diviene di tipo collinare ed è caratterizzata da rilievi con lineaamenti dolci dove in affioramento si rinviene la formazione marina del Pliocene mediosuperiore, costituita da argille marnose azzurre, siltose, talora lievemente sabbiose.

I terreni del substrato, nell'area oggetto di studio, non sono stati raggiunti dai sondaggi eseguiti; da indagini conoscitive effettuate su pozzi presenti nell'area risultano ad una profondità superiore ai 20 m.

In generale, i depositi alluvionali sono costituiti in prevalenza da argille-limose normalconsolidate, argille sabbiose e limi, a cui sono intercalati livelli di limi e sabbie addensate con giacitura irregolare ed andamento lenticolare e livelli ghiaiosi.

2.3 Idrografia e piezometria:

Nel pacco alluvionale è presente una falda idrica il cui livello statico misurato all'interno dei piezometri a tubo aperto posti in opera durante l'esecuzione delle prove penetrometriche statiche ed osservato all'interno di alcuni pozzi presenti all'interno dell'area di studio, è situato ad una profondità di circa 2,00 m dal piano campagna (marzo 2003).

Come risulta da informazioni raccolte e dalle esperienze maturate dallo scrivente sul territorio, durante i diversi periodi dell'anno, in funzione delle condizioni di ricarica, il livello di falda può manifestare escursioni di alcuni metri.

Per quanto riguarda le acque di scorrimento superficiale, gran parte della piana alluvionale è interessata da intensa urbanizzazione pertanto le acque superficiali sono convogliate nelle opere realizzate, mentre per il resto vengono raccolte nei fossetti interpoderali presenti e successivamente convogliate nei collettori naturali principali.

2.3.1 Caratteri pluviometrici:

Per la progettazione ed il dimensionamento delle opere di urbanizzazione sarà necessario tenere in debito conto delle precipitazioni massime. Si riportano a titolo orientativo, per un corretto dimensionamento delle opere sopra accennate, i dati pluviometrici relativi alle stazioni di Rimini e Verucchio registrati dal servizio idrografico, sezione idrografica di Bologna nel periodo 1921-1950.

157 — Stazione: RIMINI (Pr)

Bacino Principale: MARECCHIA

Lat. N. 44° 03'; Long. (Mer. Roma) 0° 07' E; m s. m. 7

																										
13747	Gen	naio	Feb	braio	Ма	rzo	Ap	rile	Mag	ggio	Giu	gno	Lu	glio	Ago	osto	Set	tem.	Otto	bre	No	vem.	Die	em,	AN	NO
ANNO	mm	giorni	mm	giorni piovosi	mm	giorni	mm	giorni	mm	giorni	mm	giorni	mm	giorni	mm	giorni	mm	giorni	mm	giorni piovosi	mm	giorni	mm	giorni	min	giorni piovosi
					,															<u> </u>						
1921	18	4	31	4	66	5	111	11	109	8	75	5	5	1	38	4	6	3	37	2	95	8	43	5	634	60
1922	75	7	68	9	18	4	36	8	5	1	153	7	12	2	4	1	107	12	174	18	38	8	12	5	702	82
1923	23	.5	88	11	77	6	60	8	14	2	56	7	7	3	72	3	28	5	15	3	102	12	106	11	648	76
1924	57	7	56	9	124	9	58	7	85	4	88	5	46	5	57	7	55	7	43	10	34	2	80	6	783	78
1925	7	3	110	6	54	7	50	7	82	6	32	5	33	6	18	2	161	9	106	5	149	16	41	4	843	76
1926	99	8	32	.5	43	7	29	6	40	7	36	5	102	11	42	4	174	8	56	6	73	7	214	12	940	86
1927	112	12	91	5	42	6	39	4	63	9	42	4	1	0	2	2	125	8	42	7	28	5	181	16	768	78
1928	36	6	16	2	104	14	47		98	10	43	3	2	1	2	1	223	10	106	10	73	11	72	9	822	84
1929	103	10	86	0	6	2	50	9	38	6	11	2	27	1	132	7	59	3	40	6	160	8	51	9	763	69
1930	-10	8	64	7	32	7	32	8	91	12	22	3	100	7	59	3	128	8	158	9	48	3	77	16	851	91
Medie	57	7	64	6	56	7	51	7	62	7	56	5	33	4	43	3	107	7	78	8	80	8	88	9	775	78
1931	16	4	197	11	83	11	38	8	59	10	5	1	10	2	16	4	108	8	55	8	56	6	34	-	587	80
1932	24	.5	17	3	131	9	72	8	58	8	109	9	35	6	9	1	16	3	71	10	19	8	81	9	672	79
1933	64	10	119	9	13	4	74	5	79	11	98	10	20	2	0	0	83	6	82	7	140	13	94	14	866	91
1934	32	8	77	-	58	7	38	9	35	4	151	8	39	3	119	6	150	7	37	5	47	8	54	9	837	81
1935	75	11	81	4	14	3	32	6	24	5	1	泌	2	1	43	8	11	2	86	11	57	8	84	17	510	76
1936	32	8	72	11	34	7	85	12	35	6	31	5	28	4	17	2	115	9	137	10	8	2	37	7	631	83
1937	38	7	28	7	60	12	107	10	20	5	97	7	81	5	68	7	140	11	99	11	61	13	127	16	926	111
1938	34	6	-10	4	4	2	42	5	72	15	18	2	8	1	112	ŝ	44	4	55	8	21	4	64	8	514	64
1939	53	9	7	2	79	9	24	4	197	17	196	8	15	2	9	2	113	12	48	9	27	5	90	14	858	93
1940	87	7	76	10	27	4	40	7	37	5	65	11	35	3	19	3	29	3	228	16	82	6	31	5	756	80
Medie	46	8	62	7	50	7	55	7	62	9	77	6	27	3	41	4	81	6	90	9	55	7	70	11	716	84
1941	48	7	76	12	37	5	53	10	70	10	83	5	21	2	18	4	82	4	167	10	136	14	50	5	841	88
1942	70	10	134	17	19	7	52	8	30	4	34	6	168	8	100	2	28	5	32	4	132	10	39	9	868	90
1943	39	8	72	7	46	7	5	3	26	7	20	5	7	1	1	0	47	3	163	10	67	8	45	11	538	70
1944	*	у.	*	>>	»	>-	»	»	*	>	»	»	»	ys.	»	»	»	»	>	»	»	>>	>>	»	»	» .
1945	*	>>	»	>>	»	»	*	>	>>	>	»	>	>	>>	»	»	»	»	>>	>>	»	»	»	»	>>	>
1946	*	»	*	>	»	»	»	»	»	»	»	»	>>	»	»	»	»	»	>	»	>>	>	»	»	>	39
947	»	»·	>>	3	»	*	»	»	>	>	»	»	>	25	>>	>	»	»	>	»	»	*	»	»	*	»
948	*	>>	>>	*		»	»	>	»	*	»	»	>-		»	»	»	»	>	,%	»	»	*	»	>>	»
949 950	>>	>	*	»		»	У-	»	>>	2	»	>	>>	, ,	>>	*	*	»	>>	»	»	>>	»	»	»	»
<i>33</i> €	*	*	»	»	»	»	>>	»	»)	>-	»	>	*	*	>	»	*	>>	»	»	»	»	*	»	»	Σ.
Medie	52	8	93	12	44	6	37	7	42	7	46	5	65	4	40	2	52	4	121	8 1	112	11	45	8	749	82
Medie																									j	
generali	51	7	67	7	52	7	51	7	59	7	64	6	35	3	42	3	89	7	89	9	73	8	74	10	746	81
[}				-														

rdine	PRECIPITAZIONI MASSIME CON DURATA DI GIORNI CONSECUTIVI:											
ro d'o ei cas		1		2		3		4		5		
Numero dei	mm	data	971776	data	mm	data	mm	data	mm	data		
1	98.8	16 vii 42	118.0	14-15 vi 39	136.0	14-16 vi 39	148.0	13-16 vi 39	148.0	13-17 vi 39		
2	93.4	7 VIII 42	99.8	16-17 vm 42	121.4	28-30 ix 26	124.4	27-30 IX 26	138.6	16-20 VII 42		
3	88.0	26 x 30	99.6	6-7 VIII 42	117.8	14-16 vii 42	121.2	13-16 VII 42	125.9	27- IX - 1 X 36		
4	86.4	15 vi 39	99.0	25-26 x 30	102.1	29 ix - 1 x 36	117.3	28 ix - 1 x 36	124.9	26-30 IX 26		
5	77.2	23 vi · 22	93.4	29-30 ix 26	100.5	24-26 x 30	1008	30 ix - 3 x 40	119.7	23-27 XII 26		
6	68.0	1 x 40	89.6	30 ix - 1 x 40	99.6	6-3 VIII 42	100.5	24-27 x 30	102.1	23-27 IX 28		
7	66.0	30 IX 26	84.3	30 ix · 1 x 36	92.0	30 IX - 2 X 40	99.6	6-9 VIII 42	100.8	30 rx - 4 x 40		
8	65.0	16 VIII 34	82.5	13-14 x 25	86.3	29 vi - 1 vii 37	91.7	24-27 xii 26	100.5	24-28 x 30		
9	64.0	18 xr 29	81.5	3-4 VIII 29	82.5	13-15 x 25	86.5	3-6 VIII 29	99.6	6-10 viii 42		
10	62.9	27 IX 28	77.2	23-24 vi 22	81.5	3-5 VIII 29	86.3	29 vi - 2 vii 37	94.2	27-31 x 43		
11	62.0	4 VIII 29	72.0	8-9 II 35	77.2	23-25 vi 22	85.2	27-30 x 43	93.9	19-23 vi 22		
12	58.0	9 IX 41	70.9	1-2 IX 34	77.0	8-10 111 24	84.7	21-24 vi 24	88.0	29 v - 2 vi 39		
13	57.1	13 x 25	70.0	14-15 ix 25	77.0	8-10 II 35	82.9	29 v - l vi 39	86.5	3-7 VIII 29		
14	56.8	30 v 21	68.8	23-24 vi 24	76.1	29-31 VIII 38	82.5	13-16 x 25	86.3	29 vi - 3 vii 37		
15	54.4	8 II 35	67.5	18-19 xr 29	74.8	22-24 VI 24	79.1	20-23 vi 22	86.0	14-18 IX 28		
16	53.0	30 ix 25	66.4	15-16 VIII 34	74.4	1-3 IX 34	78.2	29 VIII - 1 IX 38	84.7	21-25 vi 24		
17	52.0	18 IX 29	66.4	2-3 x 41	73.0	16-18 xi 29	77.3	7-10 III 24	83.4	3-7 XII 26		
18	52.0	1 vii 37	63.5	8-9 XII 27	72.6	12-14 IX 34	77.0	8-11 11 35	82.5	13-17 x 25		
19	50.0	13 1 26	62.9	27-28 IX 28	70.6	4-6 x1 41	76.5	16-19 xi 29	78.6	11-15 IX 25		
20	49.6	23 VI 24	62.0	16-17 IX 30	70.0	14-16 ix 25	75.3	11-14 ix 34	78.3	7-11 x 36		
21	48.6	3 x 41	61.0	29-30 xi 40	68.9	7-9 x 36	74.4	3-6 XII 26	78.2	29 VIII - 2 IX 38		
22	48.0	21 vi 34	60.0	9-10 IX 31	68.6	28-30 x 43	74.4	1-4 IX 34	77.3	7-11 mi 24		
23	47.6	9 x1 42	60.0	19-20 IX 37	68.3	30 v - 1 vi 39	73.3	7-10 x 36	77.0	8-12 m 35		

Lat. N. 43° 59'; Long. (Mer. Roma) 0° 02' W; m s. m. 332

137370	Gen	naio	Febl	raio	Ма	rzo	Apı	rile	Ma	ggio	Giv	gno	Lu	glio	Ago	sto	Set	tem.	Otto	obre	No	vem.	Di	cem,	AN	NO
ANNO	mm	giorni piovosi	mm	giorni piovosi	mm	giorni piovosi	mm	giorni	mm	giorni	mm	giorni	mm	giorni	mm	giorni	mm	giorni	mm	giorni	mm	giorni	mm	giorni	mm	giorni
																_										
1921	. 55	. 6	45	.5	49	6	152	12	60	6	134	6	10	1	20	1	5	3	90	3	152	6	62	6	834	61
1922	. 160	8	154	7	55	6	95	7	15	3	191	7	15	3	0	0	120	6	170	7	12	1	23		1010	58
1923	. 10	1	80	5	75	3	95	4	21	2	96	7	20	2	45	2	40	3	20	1	85	3	162	7	749	40
1924	90	4	120	8	182	8	120	7	70	4	103	5	50	2	50	2	30	2	46	4	55	2	150	5	1066	53
1925	. 5	1	125	5	55	5	68	5	60	4	40	6	23	3	30	2	233	8	45	3	196	7	131	4	1011	5.3
1926	35	4	30	3	74	4	65	6	54	5	12	2	113	7	55	4	167	7	90	5	72	4	175	8	942	59
1927	143	-	90	3	50	6	50	5	122	8	23	2	0	0	0	0	125	5	90	5	95	3	300	8	1088	52
1928	57	3	16	2	229	15	102	6	108	10	24	2	0	0	0	0	329	10	130	7	76	6	108	6	1179	6.
1929	100	8	45	4	6	1	82	9	98	8	19	2	22	1	97	6	83	3	34	7	247	8	79	9	912	66
1930	43	4	83	5	29	4	56	8	133	10	22	4	87	-7	55	3	153	8	149	7	49	4	94	12	953	76
Medie	70	5	79	5	80	6	89	7	74	6	66	4	34	3	35	2	129	5	86	5	104	4	128	7	974	59
1931	50	6	128	14	93	9	49	<i>-</i>	60	9	9	2	39	2	9	2	125	9	69	4	63	10	44	7	738	81
1932	55	-7	17	ő	158	8	101	9	71	7	110	12	36	6	3	1	15	3	87	9	73	7	90	9	816	83
1933	74	8	217	9	10	2	85	4	119	9	76	9	37	4	0	0	100	5	120	6	247	15	143	17	1228	88
1934	62	10	106	4	78	12	32	6	47	7	146	8	20	3	29	3	127	7	111	4	63	8	65	7	886	. 79
1935	128	11	72	4	22	2	27	4	50	10	4	2	52	3	40	6	35	3	92	8	88	8	101	13	711	7.4
1936	51	8	72	10	45	-	141	10	29	6	277	4	13	2	50	2	168	10	182	11	22	4	40	6	1090	80
1937	44	8	43	-	91		110	11	52	8	88	7	127	4	79	7	175	8	134	10	98	13	197	15	1238	105
1938	39	آ	58	8	10	2	79	9	119	14	47	3	28	1	151	-	29	3	71	8	32	4	99	8	762	74
1939	101	9	31	3	100	10	78	3	286	16	173	9	75	2	17	3	120	13	72	10	41	5	146	13	1203	96
1940	104	11	82	10	31	3	• •	'	85	8	170	10	62	4	127	-[32	2	252	16	126	6	107	5	1255	89
Medie	67	9	83	7	64	6	78	7	92	9	110	7	49	3	50	4	93	6	119	9	85	8	103	10	993	25
1941	51	8	98	10	63	3	69	9	143	9	46	5	67	2	20	2	104	6	112	9	126	10	82	4	981	
1942	84	10	179	14	70	7	97	8	35	4	43	5	168	7	46	3	17	4	28	3	143	8	51	8	961	.81
1943	23	5	57	6	52	6	18	2	27	4	53	2	25	1	0	0	82	4	260	11	89	6	74	13	760	60
1944	»	>>	>>	>>	>>	»	»	»	»	»	»	>		»		35	»	ž	»	»	<i>»</i>	>>	»	»	»	
1945	56	6	10	I	11	1	21	4	13	2	11	2	1	1	24	3	53	5	39	5	94	10	93	9	426	49
1946	02	11	2	4	83	-	15	2	39	4	2	2	31	3	16	2	1	1	142	12	227	15	143	10	793	70
1947	82	٦		10	48	6	25	4	42	8	11	1	0	0	58	4	132	5	145	6	52	6	69	7	758	64
1948	64	8	72	6	0	0	60	6	35	6	14	.5	61	5	17	2	- 1	10	176	9	97	5	22	3	757	65
1949 1950	31 82	6	0	0	49	7	13	3	121	11	105	9	30	2	107	-	86	6	126	ı	129	19	27	5	824	37
		9	46	6	88	5	71	10	29	2	38	5	17	1	24	2	96	8	83	7	64	8	100	10	738	7.3
Medie	63	8	62	6	52	5	43	5	54	6	36	4	44	2	35	3	79	5	123	8	113	10	73	8	777	70
Medie																										
generali	67	7	75	6	66	6	71	6	74	7	72	5	42	3	40	3	101	6	109	7	100	7	103	8	920	71
l						l									l								j		l	

dei casi		1			2			3			4			5	
dei	mm	da	ita,	mm	data		mm	data		mm	data		mm	dat	ta.
			·												
1	220.0	26 v	ı 36	220.7	26-27 VI	36	266.4	26-28 VI	36	266.4	26-29 VI	: 36	266.4	26.20	
2	95.0	21 x	ıı 25	142.3	31 x - 1 x1	48	160.6	28-30 x	43	191.0	27-30 x	43	206.1	26-30 V	_ 0
3	94.8	26 x	47	133.7	29-30 x	43	149.7	30 x - 1 x _I	48	183.7	29 v - 1 v		194.4	29 v - 2 v	
1	86.2	2 x	29	127.1	21-22 11	33	148.1	29-31 v	39	156.0	30 x - 2 >		164.7	23-27 IX	
5	85.5	17 IX	28	120.0	14-15 ix	25	142.5	20-22 11	33	149.5	20-23 п	33	158.0	28 x - 1 x	
í	85.0	14 IX	25	118.1	29-30 v	39	140.0	6-8 XII	27	145.0	5-8 xi	1 27	152.2	20-24 11	
	80.4	1 vi	1 37	112.7	26-27 x	47	126.3	29 xi - 1 xii	40	132.0	27-30 ix	26	151.2	2-6 xi	
1	80.0	8 x1	1 27	168.1	30 xi - 1 xii	40	120.0	14-16 IX	25	130.0	4-7 x1	ı 24	145.0		1 2
	77.5	29 x	43	106.2	2-3 x1	29	113.6	25-27 x	47	126.7	26-29 x	47	141.8	13-17 IX	
	77.2	31 x	48	105.0	6-7 XII	24	111.5	7-9 x	36	126.3	29 xi - 2 x	ı 40	136.2	27 IX - 1	
	76.8	130 XI	40	95.0	9-10 XI	21	111.2	2-4 x1	29	124.7	24-27 IX	28	135.0	3-7 xr	ı 2
	75.5	21 11	33	95.0	21-22 XII	25	110.0	27-29 IX	26	123.0	28 ix - 1	x 36	132.0	27 ix - 1 :	
	74.2	14 1x	29	95.0	27-28 x11	27	105.0	6-8 XII	24	120.0	14-17 ix	25	130.3	26-30 x	4
	73.3	30 v	39	93.7	17-18 IX	28	103.0	28-30 IX	36	115.1	7-10 x	36	130.0	11-15 IX	25
	72.0	27 ix	28	92.7	23-24 IX	28	101.6	20 vi - 1 vii	37	114.9	14-17 vii	42	126.3	29 XI - 3 XI	ı 40
	70.0	22 x	22	92.3	3-4 11	34	99.2	5-7 XII	46	114.0	14-17 IX	28	123.9	25-29 111	28
	68.4	7 x	37	91.5	7-8 x	36	96.7	17-19 IX	28	111.2	2-5 XI	29	120.5	7-11 x	36
	65.1	l xı	48	90.0	27-28 IX	26	95.1	2-4 11	34	110.5	25-28 111	28	120.0	16-20 vi	22
	65.0	29 IX	25	85.9	5-6 XII	46	95.0	9-11 xi	21	106.2	5-8 x11	46	120.0	22-26 x	22
	64.5	5 XII	ļļ.	82.0		46	95.0	21-23 vi	24	105.0	3-6 XII	26	120.0	16-20 п	25
	64.2	7 IX	- 11	80.4	1-2 VII	37	95.0	21-23 XII	25	102.8	13-16 vi	39	119.9	13-17 VII	42
	62.2	12 XII	li li	80.0		21	95.0	27-29 XII 2	27	101.6	29 vi - 2 vii	37	113.7	3-7 IX	47
	62.2	5 ix		80.0		22	93.8	14-16 vi 3	39	96.0	1-4 II	34	111.2	10-14 XI	46
	61.4	1 vii		80.0		22	92.7	23-25 IX 2	28	95.0	9-12 xi	21	106.2	5-9 XII	46
		11 x	34	80.0	8-9 XII 2		92.2		16	95.0	21-24 VI	24	105.0	6-10 x1	21
	60.5	1 m	l]	80.0	14-15 vi 3	- 11	91.4	27-29 111 2	28	95.0	21-24 XII	25	105.0	3-7 XII	26
		18 x	33	79.5	6-7 IX 4		90.5	14-16 VII 4	2	95.0	27-30 xii	27	103.2	12-16 vi	39
	60.3	4 11	34	78.7	1-2 111 5		90.0	14-16 vi 2	2	94.6	9-12 xi	46	101.6	29 vi - 3 vii	37
	60.0	4 111	23	78.0	27-28 111 2	8	90.0	8-10 III 2	4	90.0	14-17 vi	22	98.2	31 1 - 4 11	34

^{*} Escluso l'anno 1944.

3 <u>INDAGINI GEOGNOSTICHE E LITOSTRATIGRAFIA:</u>

Le indagini geognostiche programmate ed eseguite in ottemperanza a quanto disposto nel D.M. 24 gennaio 1986 e D.M. 11 marzo 1988, sono state distribuite uniformemente sull'area del piano particolareggiato interessata dalla nuova edificazione e sono state realizzate nel mese di marzo 2003; la loro ubicazione è evidenziata nella planimetria in scala 1:1000 riportata in appendice alla presente.

Si sono eseguite:

- n°10 prove penetrometriche statiche con penetrometro del tipo Gouda da 20 t;
- posa in opera di n° 4 piezometri aperti di tipo Casagrande all'interno dei fori delle prove penetrometriche statiche;
- prelievo di n° 2 campioni per le analisi di laboratorio;
- su ogni campione si sono eseguiti le seguenti analisi: caratteristiche volumetriche, determinazione dei limiti di Atterberg, analisi granulometrica e prova di taglio CD.

Le indagini effettuate in sito e quelle in possesso di questo studio eseguite su aree circostanti permettono di schematizzare la seguente litostratigrafia:

- 1. dal p.c. a -1,00:1,20 m.; terreno di alterazione superficiale e/o terreno agricolo caratterizzato prevalentemente da argilla, argilla limosa e materiale organico,
- 2. da -1,00:1,20 m. a fine sondaggi; argilla ed argilla-limosa mediamente consistente con argilla sabbiosa intercalata e sottili livelli limosi e sabbiosi addensati (Depositi alluvionali). Le prove statiche n° 1, n° 3 e n° 5 si sono arrestate a profondità variabili dai 10,00 ai14,00 m. dal p.c. all'interno di livelli ghiaiosi.

Per una visione completa della situazione litostratigrafica si rimanda alle sezioni riportate in appendice.

3.1 Caratteristiche geotecniche dei terreni:

Le caratteristiche geotecniche generali dei terreni, sono state ricavate dalle risultanze delle indagini in sito (prove penetrometriche statiche), utilizzando le tabelle e le formule disponibili in letteratura¹; le analisi di laboratorio effettuate sui campioni prelevati hanno consentito la verifica degli elementi emersi dalle indagini in sito.

Quindi, le diverse esperienze maturate nel territorio interessato consentono di attribuire, in maniera obiettiva, ai terreni indagati i seguenti parametri:

Strato n° 1: (terreno superficiale)

Si trascura dal punto di vista geotecnico lo strato di terreno agricolo superficiale e quindi soggetto ad accentuate variazioni del contenuto di umidità in funzione delle condizioni climatiche.

Strato n° 2: (Depositi alluvionali)

Argilla ed argilla-limosa con livelli argilloso-sabbiosi intercalati.

La resistenza alla penetrazione statica è compresa mediamente tra:

$$7 < Rp < 20 \text{ Kg/cm}^2$$

 γ = 1,85 t/mc peso di volume naturale, φ ' = 15°:18° angolo di attrito interno, c' = 1,0:1,6 t/mq coesione,

cu = 4,0:8,0 t/mq coesione a breve termine.

Cu = Rp/20 Eed = Rp x α

 α ; = coefficiente adimensionale dipendente dalla litologia e dalle caratteristiche del terreno (3-5)

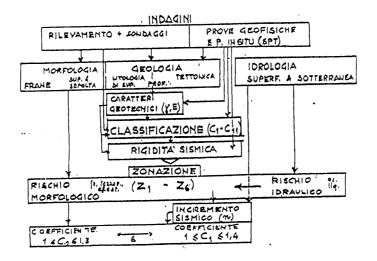
¹ Le Pénétrométre et la Reconnaissance des Sols Interpretation des diagrammes de pénétration theorie et pratique (Dunod Paris 1965);

⁻ sondaggi penetrometrici statici;

I parametri sopra descritti sono da ritenersi significativi per l'intero pacco alluvionale, ad esclusione naturalmente delle lenti più propriamente limoso-sabbiose non dotate di coesione, ma (visto il grado di addensamento medio alto) con valori dell'angolo di attrito decisamente più elevati.

4 CARATTERISTICHE SISMICHE:

4.1 Coefficiente sismico di fondazione:


* CALCOLO BASATO SUL METODO DELLA ZONAZIONE

Il territorio sul quale ricade l'area interessata dall'indagine è classificato sismico di 2^a categoria con grado di sismicità S = 9.

Il coefficiente sismico di fondazione vale: $\varepsilon = C_1 \times C_2$ $C_1 = coefficiente di risposta meccanica ed idrologica;$ $C_2 = fattore di incidenza morfo-tettonica.$

L'esame delle condizioni litostratigrafiche, geomorfologiche e tettoniche ha evidenziato quanto segue:

- l'area è pianeggiante, priva di lineazioni tettoniche di rilevante valore;
- la litostratigrafia comprende: argille ed argille limose normalconsolidate con argilla sabbiosa intercalata e sottili livelli limosi e sabbiosi addensati con giacitura irregolare e lenti ghiaiose, i terreni della formazione di substrato non sono stati raggiunti dai sondaggi effettuati (profondità indagate 15,00 m. dal p.c.);
- nel pacco alluvionale è presente una falda idrica il cui livello statico, osservato all'interno dei piezometri posti in opera nelle prove eseguite e verificato all'interno di alcuni pozzi presenti nell'area di studio (Marzo 2003) è situato ad una profondità di circa –2,00 m dal piano campagna.

Il metodo di valutazione segue lo schema allegato:

Alla luce delle indagini eseguite nell'area (prove penetrometriche statiche) e delle precedenti considerazioni si ottiene:

$$\mathcal{E} = C_1 \times C_2 = 1.04 \times 1.00 = 1.04$$

che può essere arrotondato per difetto ad $\mathcal{E} = 1,00$

* DISPOSIZIONI DEL D.M. 16.01.1996

Anche in base alle disposizioni del D.M. 16.01.1996 (punto C.6.1.1. coefficiente di fondazione ε), visto che lo spessore del deposito alluvionale sovrastante terreni con caratteristiche significativamente superiori, è sicuramente maggiore di 20,0 m (da varie indagini ed esperienze maturate nel luogo), il valore del coefficiente ε da assumere dovrebbe essere 1,00.

4.2 Potenziale di liquefazione:

In relazione a quanto prescritto sulle "Norme Tecniche relative alle costruzioni in zone sismiche" è stata verificata la possibilità di fenomeni di liquefazione dei livelli di terreno incoerente presenti nella locale successione stratigrafica.

Notoriamente tali fenomeni possono verificarsi unicamente nell'ambito dei sedimenti di composizione principalmente limososabbiosa scarsamente addensati o sciolti e sottofalda.

Poichè i risultati dell'indagine hanno evidenziato per i terreni che saranno interessati dalle opere di fondazione:

- una decisa prevalente composizione argillosa ed argilloso-limosa, quindi terreni con buone caratteristiche coesive, normal-consolidati (vedi risultati analisi di laboratorio);
- stati di addensamento dei sottili e discontinui livelli limoso-sabbiosi da medio a medio-alti (questi ultimi, densi e saturi si deformano sotto sollecitazioni sismiche con aumento di volume, in conseguenza di tale dilatazione la pressione interstiziale subisce una brusca caduta e il terreno riesce a sviluppare una resistenza sufficiente a sostenere le sollecitazioni sismiche applicate);

si può quindi escludere che i terreni interessati dal piano particolareggiato siano soggetti a fenomeni di liquefazione se sottoposti a sollecitazioni sismiche.

5 URBANIZZAZIONI:

Viste le caratteristiche morfologiche e litologiche dei terreni superficiali, la realizzazione delle opere di urbanizzazione sarà possibile adottando le tecniche ed i materiali in uso normalmente.

Per la realizzazione delle condotte interrate relative alle fognature ed alle varie utenze, saranno sufficienti le normali profondità di posa richieste dagli enti, nell'eventualità di dover raggiungere profondità rilevanti (superiori ad 1,2 m), si raccomanda di tenere conto della presenza di falda che in periodi di massima ricarica può raggiungere quote prossime al p.c.

Per la esecuzione delle strade di lottizzazione e dei marciapiedi, prima della posa del materiale di fondazione, sarà consigliabile lo scotico minimo di circa 0,60 m. di terreno superficiale, per evitare successive fessurazioni, dovute a fenomeni di rigonfiamento o ritiro dello strato superficiale stesso.

Si consiglia inoltre, per la realizzazione dei marciapiedi e delle pavimentazioni esterne a servizio degli edifici, di utilizzare solette in calcestruzzo armato irrigidite.

6 EDIFICABILITA' DELL'AREA:

Viste le risultanze delle indagini eseguite in sito, di quanto emerso dal rilievo geomorfologico e dai risulati delle analisi di laboratorio eseguite sui campioni prelevati, <u>si può affermare che l'area risulta edificabile adottando le normali metodologie esecutive.</u>

In generale si potranno adottare fondazioni superficiali (travi rovesce o platee ecc..), con carichi di esercizio compresi tra 1,00-1,20 Kg/cmq., impostate a profondità di circa –1,60:1,80 m. dal p.c. per evitare di utilizzare come terreno di posa lo strato di terreno superficiale sensibile alle variazioni di umidità esterne.

In fase esecutiva, in relazione alla scelta definitiva delle tipologie edilizie, si dovrà definire, mediante una indagine più mirata:

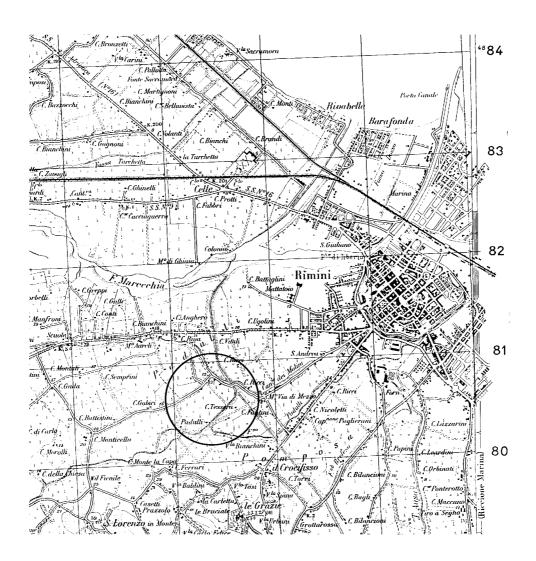
- la profondità esatta di posa delle fondazioni;
- l'esatto carico ammissibile (Qa) in relazione alle caratteristiche geometriche delle fondazioni;
- i cedimenti totali e differenziali per verificare la compatibilità con la deformabilità della struttura da progettare.

Sarà importante verificare quest'ultimo punto in relazione alle caratteristiche di compressibilità del terreno di posa emerse in fase di indagine.

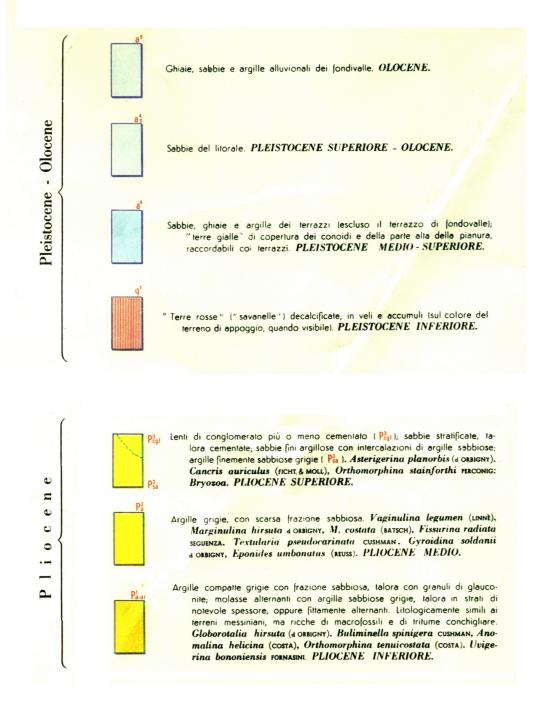
Si raccomanda, inoltre, di tenere in debito conto nella progettazione esecutiva degli edifici, della presenza della falda a quote superficiali.

Lo studio resta a disposizione per integrazioni e controlli che si dovessero rendere necessari per istruire la presente pratica.

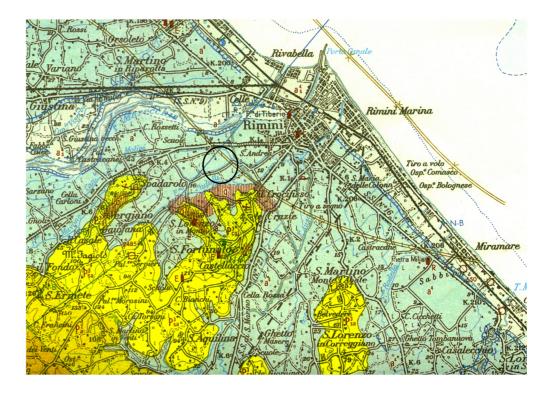
Gabicce Mare, Marzo 2003

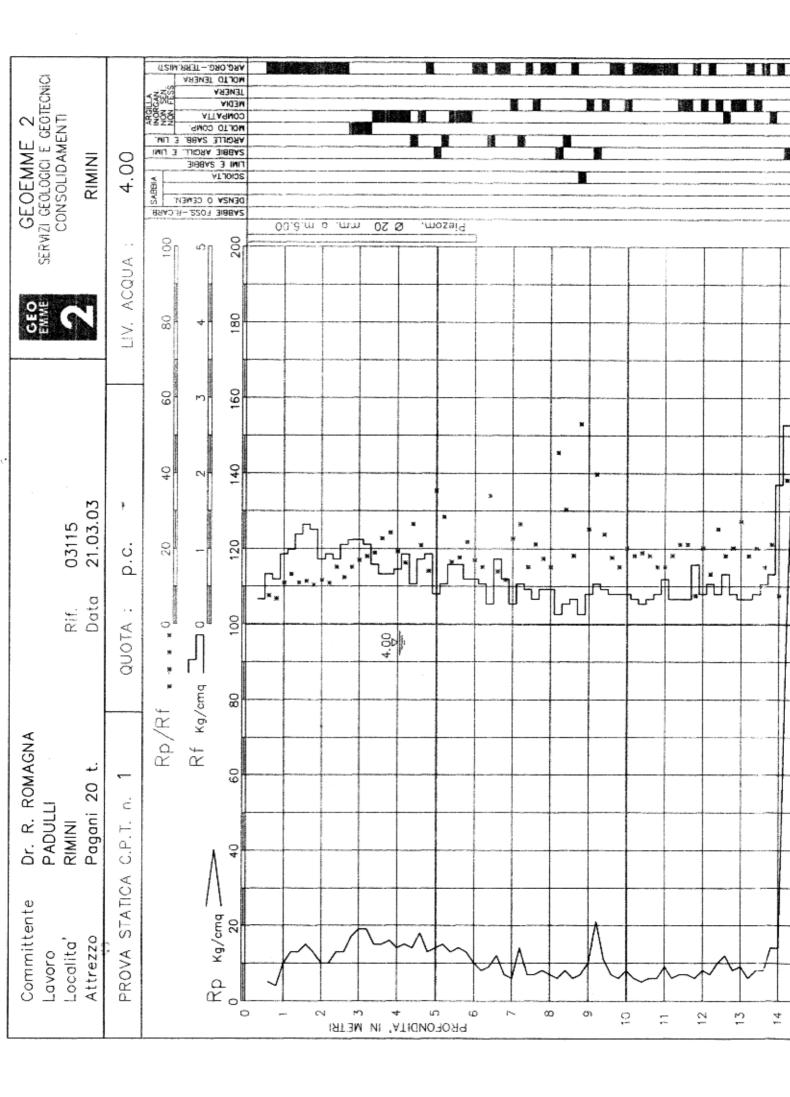

Dott. Geol. Roberto Romagna

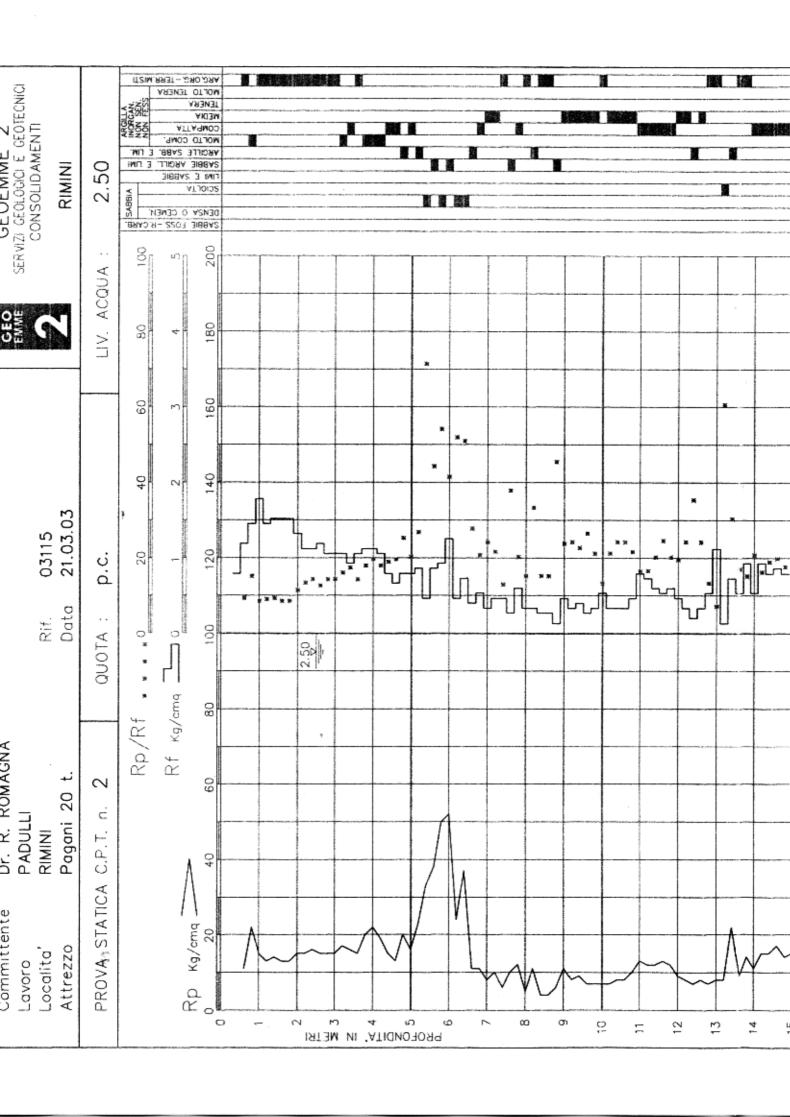
SOMMARIO

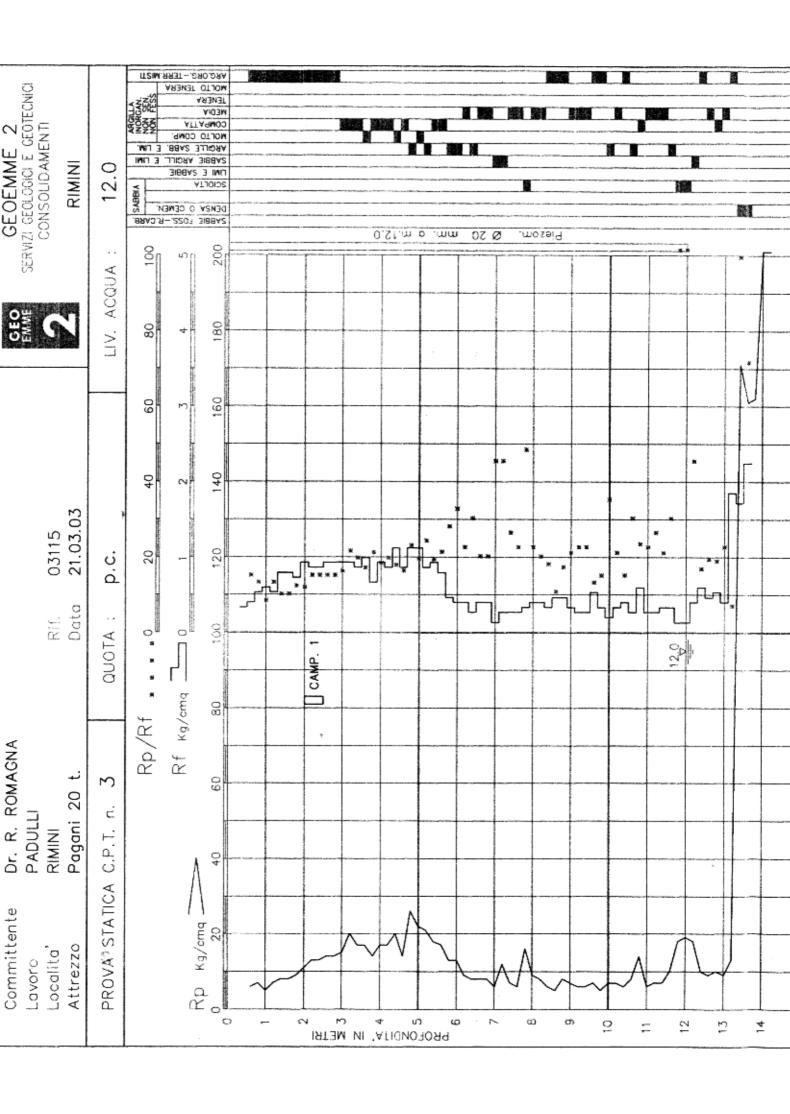

1	PREMESSE:	1
2	INQUADRAMENTO GENERALE:	2
	2.1 Ubicazione:	2
	2.2 Geomorfologia:	4
	2.3 Idrografia e piezometria:	4
	2.3.1 Caratteri pluviometrici:	5
3	INDAGINI GEOGNOSTICHE E LITOSTRATIGRAFIA:	6
	3.1 Caratteristiche geotecniche dei terreni:	7
4	CARATTERISTICHE SISMICHE:	8
	4.1 Coefficiente sismico di fondazione:	8
	4.2 Potenziale di liquefazione:	9
5	URBANIZZAZIONI:	.10
6	EDIFICABILITA' DELL'AREA:	.11

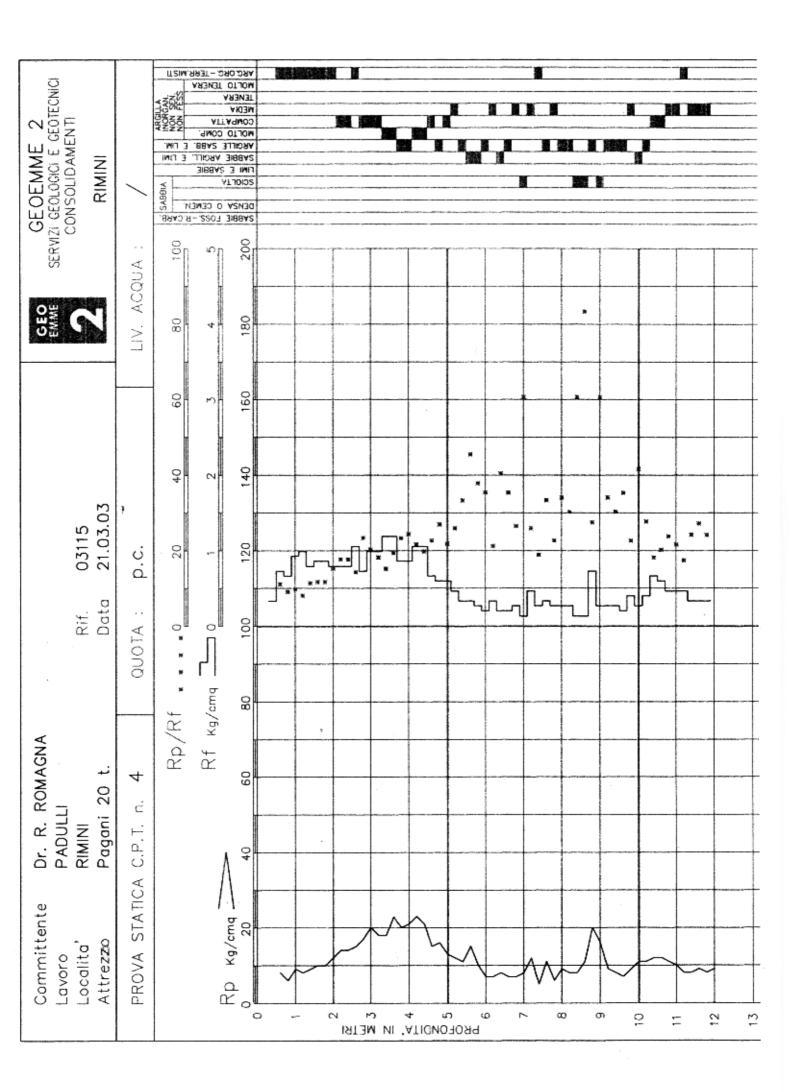
INQUADRAMENTO GENERALE

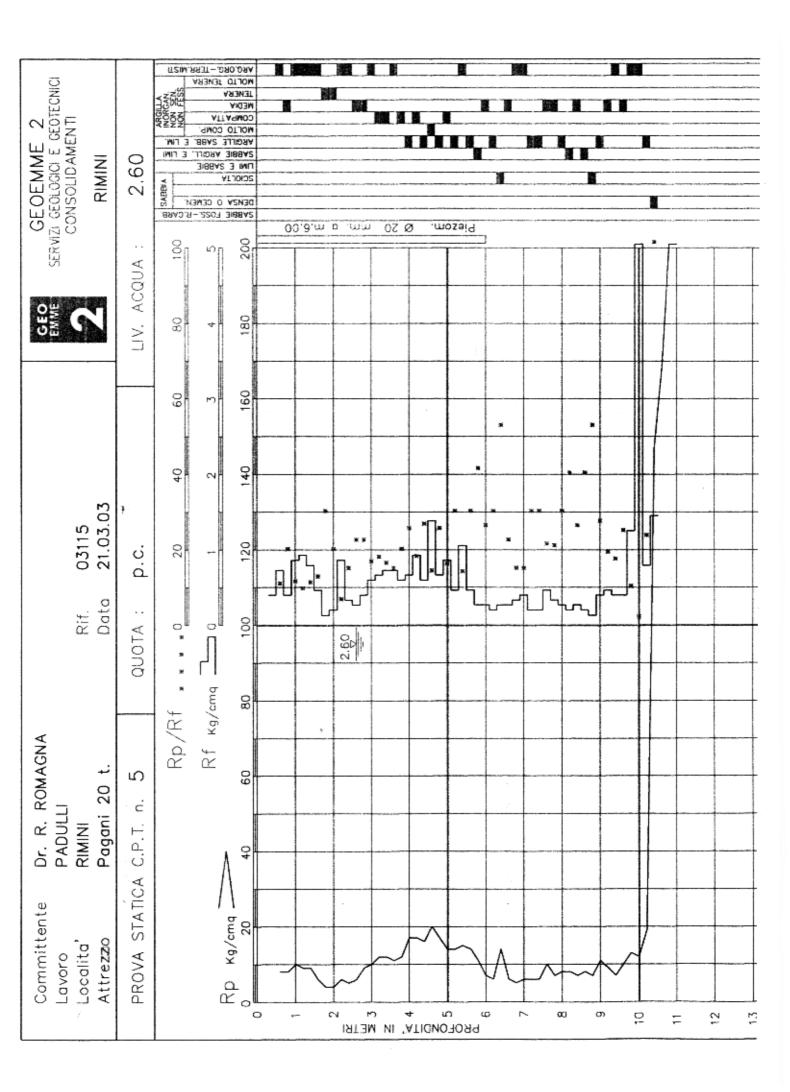

FOGLIO 101 CARTA D'ITALIA - TAVOLETTA III S.O. SCALA 1:25.000

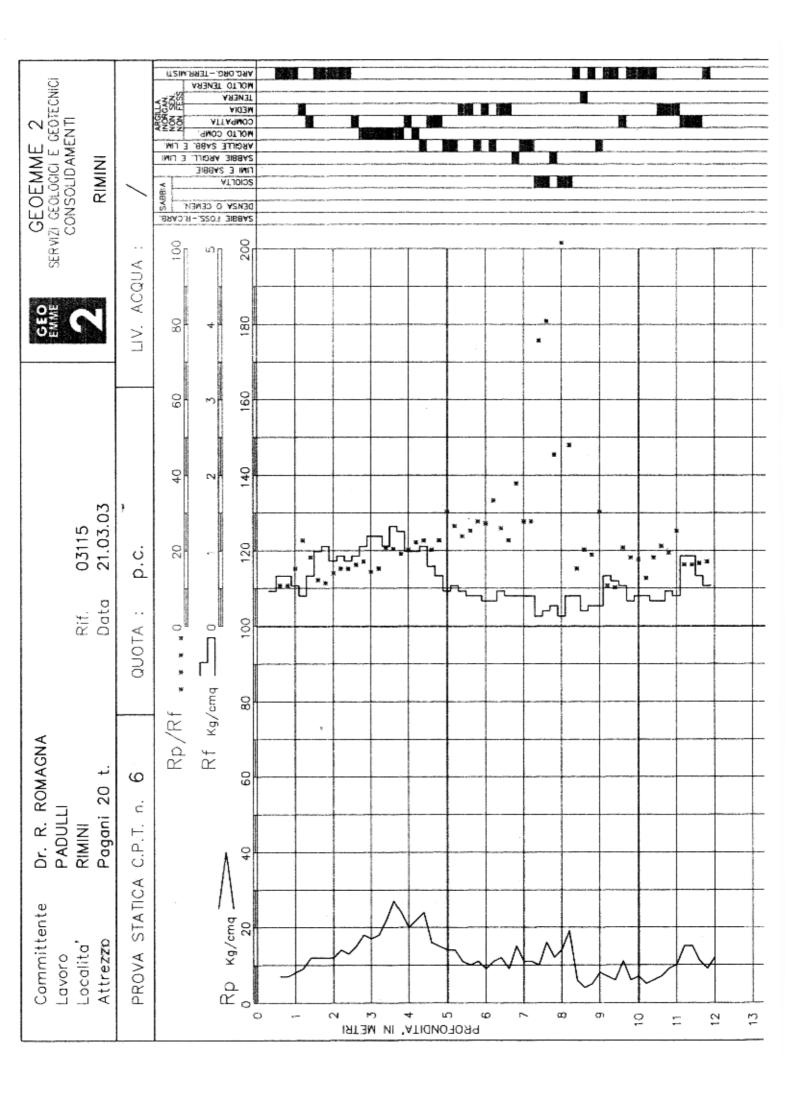

Legenda

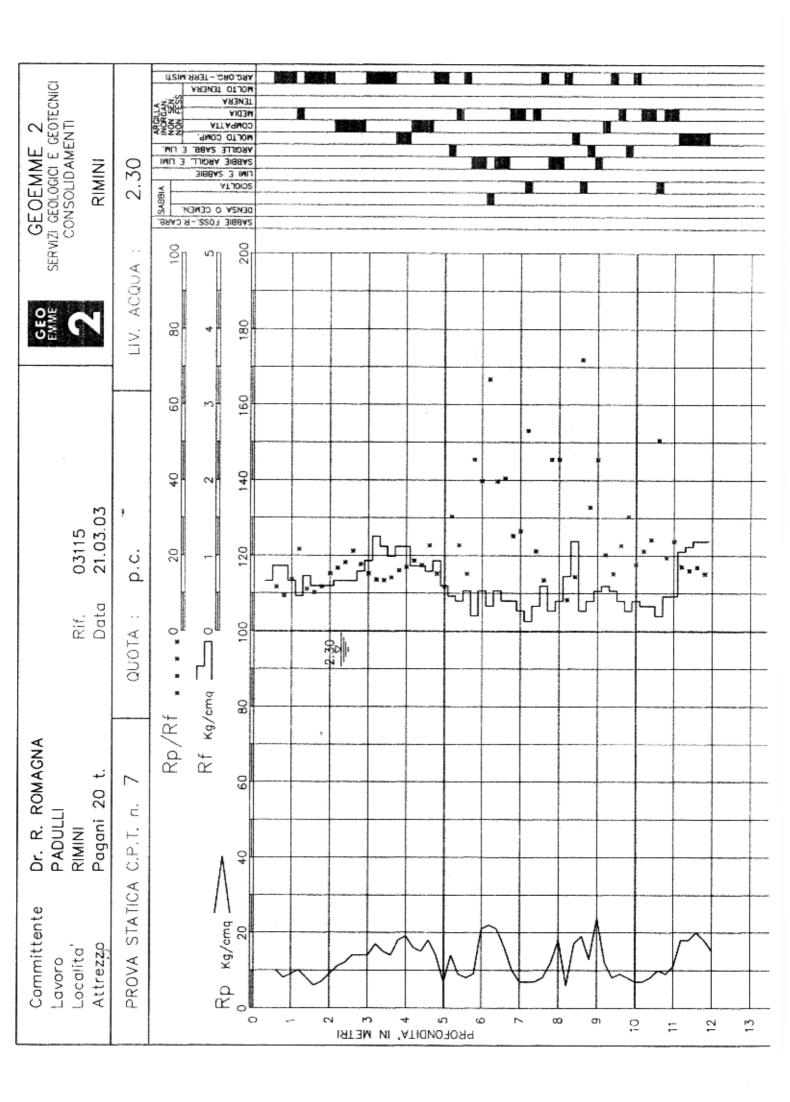


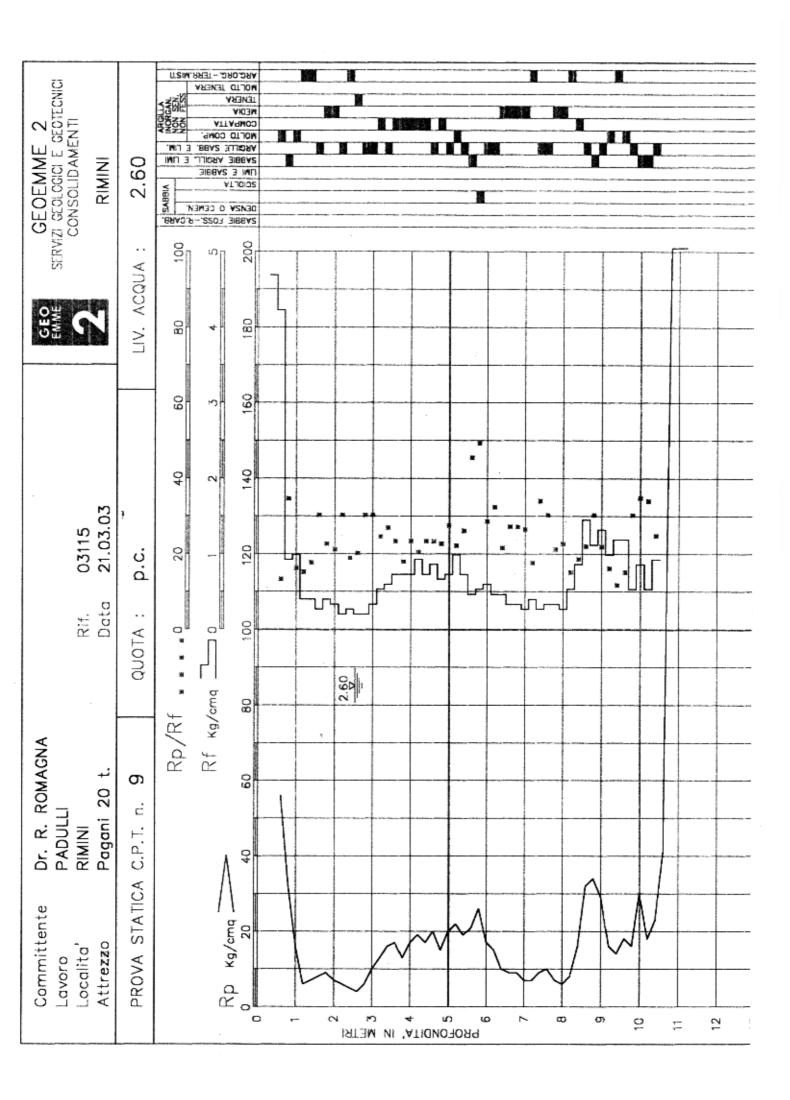

STRALCIO CARTA GEOLOGICA D'ITALIA scala 1:100.000

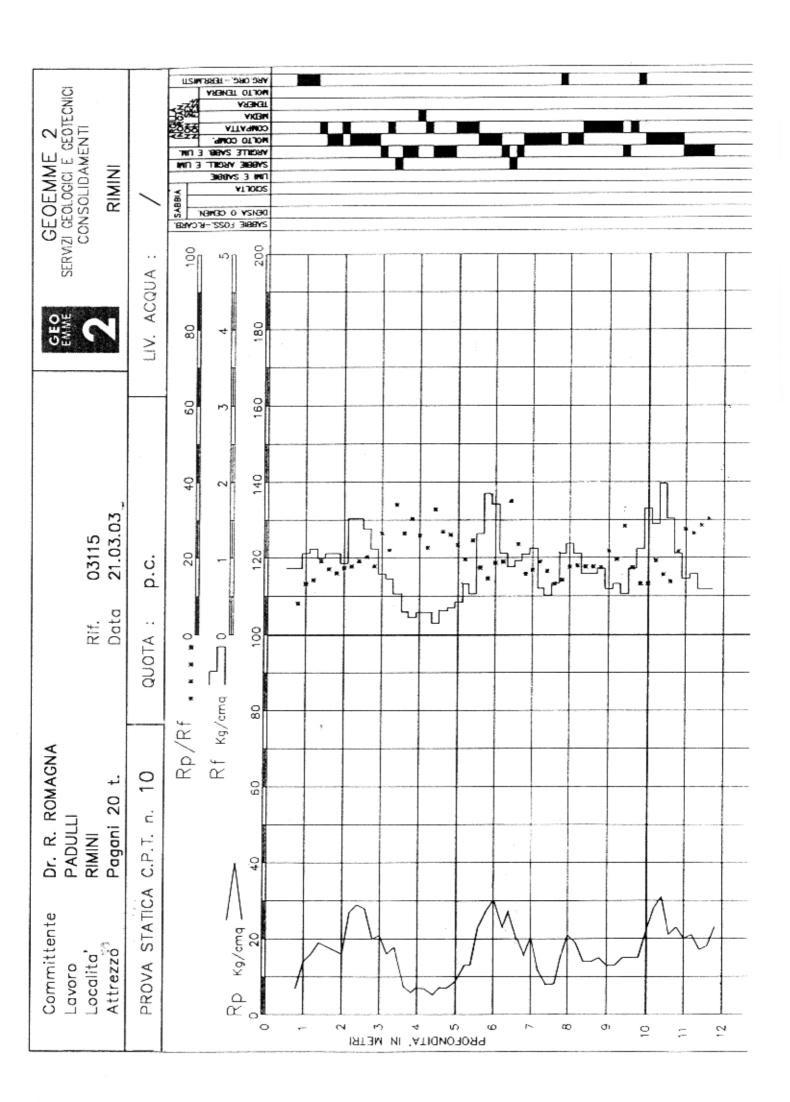



Area di indagine









APPENDICE "A"

Analisi di laboratorio

Committente Dr. ROBERTO ROMAGNA

Lavoro

PADULLI RIMINI

Data

APR. 2003

Rif.

03115

GEOEMME 2

SERVIZI GEOLOGICI E GEOTECNICI CONSOLIDAMENTI

RIMINI

Sond n. 3 Camp n. 1 da m. 2.0

a m. **2.5**

SOMMARIO DELLE CARATTERISTICHE FISICO-MECCANICHE

DESCRIZIONE:

ARGILLA LIMOSA GRIGIO-VERDASTRA CON VARIEGAZIONI BRUNO-ROSSASTRE E SPARSI INCLUSI CARBONATICI MILLIMETRICI BIANCO-GRIGIASTRI, PRESENZA DI TRITUME CONCHIGUARE, CONSISTENTE.

CARATTERISTI	CHE GENE	ERALI		LIMITI DI CONSISTENZA							
Umidita' naturale	W ==	38.12	%			77.5	~				
Peso di volume umido	γ =	1.83	g/cmc	Limite di liquidita	Wi =	/3.5	74				
Peso di volume secco	yd =	1.33	g/cmc	Limite di plosticito	Wp =	31.3	%				
Peso specifico	G =	2.738	g/cmc								
Indice dei vuoti	e =	1.06		Indice di liquidita	1! =	0.16					
Porosita'	n ==	51.49	%	Indice di plasticita'	lp ™	42.2					
Umidita di saturazione	Wsat =	38.79	%	marce as prasticita	15	72.2					
Grado di saturazione	Sr =	98.28	%	Indice di consistenza	Ic =	0.84					
GRANU	LOMETRIA			RES	SISTENZA						
Sabbia (0.6 - 2 mm)	=	5.0	%		40 47						
Limo (0.002 - 0.6 mm	1) =	25.4	%	Pocket Penetrom,	qu =1.2 - 1.7	,	Kg/cmq				
Argilla (< 0.002 mm)		69.6	%	Vane Test	Cu ≕0.4 - 0.8	5	Kg/cmq				
		,	TAGLIC	C.D.							
angolo di attrita	arphi' as	14	.6	Coesione	C' =	0.14	Kg/cmq				
angolo di attrito residua	φr =			Coesione residua	Cr =		Kg/cmq				

OSSERVAZIONI:

Lavoro

Dr. ROBERTO ROMAGNA

PADULLI RIMINI

APR. 2003

Rif.

Data

03115

GEOEMME 2

SERVIZI GEOLOGICI E GEOTECNICI CONSOLIDAMENTI

RIMINI

Sond n. 3

Camp n. 1

da m. **2.0**

a m. **2.5**

CARATTERISTICHE VOLUMETRICHE

						media
Diametro		cm	6	6	6	
Sezione	Α	cmq	28.27	28.27	28.27	
Aitezza	Н	am	2.2	2.2	2.2	
Volume	٧	cmc	62.20	62.20	62.20	
Tara		N.	11	24	33	
Camp. umido + tara	X	g	125.84	128.58	131.61	
Camp. secco + tara	Y	g	94.28	97.38	99.93	
Peso tora	Z	g	13.81	13.64	16.27	
Peso ocquo	X-Y	g	31.56	31.20	31.68	
Peso camp. secco	Y-Z	g	80.47	83.74	83.66	
Umidita" naturale	Wn=100*(X-Y)/(Y-Z) %	39.22	37.26	37.87	38.12
Peso di volume umido	γ=(X-Z)/V	g/cmc	1.80	1.85	1.85	1.83
Peso di volume secco	γd=(Y-Z)/V	g/cmc	1.29	1.35	1.34	1.33
Peso specifico	G	g/cmc	2.738	2.738	2.738	
Indice dei vuoti	e=G/yd - 1		1.12	1.03	1.04	1.06
Porosita"	n=100*e/(1+e)	%	52.75	50.83	50.88	51.49
Umidita' di sat.	Wsat=n/γd	%	40.78	37.76	37.83	38.79
Grado di sat.	Sr=100*Wn/Wsat	%	96.18	98.67	100.00	98.28
Pocket penetrometer		kg/cmq	1	.2 - 1.7		
Thor Vane		kg/cmq).4 - 0.5		

NOTE:	
\$	

Dr. ROBERTO ROMAGNA

Lavoro

PADULLI RIMINI

Data

APR. 2003

Rif.

03115

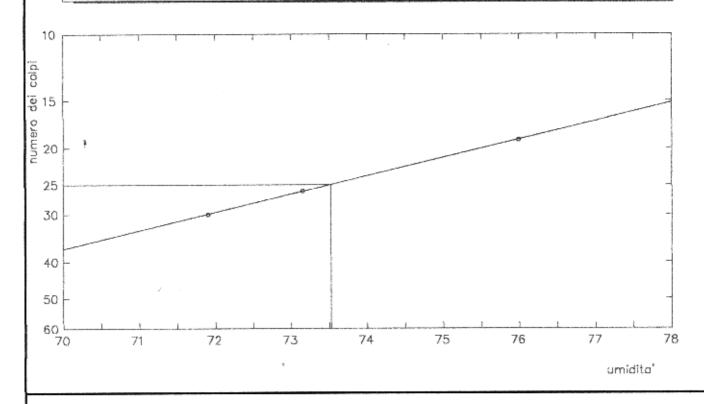
GEOEMME 2

SERVIZI GEOLOGICI E GEOTECNICI CONSOLIDAMENTI

RIMINI

Sond n. 3

Camp n. 1


da m. **2.0**

a m. 2.5

DETERMINAZIONE DEI LIMITI DI ATTERBERG

LIMITE DI LIQUIDITA'

CONT.	Prova N.		1	2	3	
	Umidita' W	%	75.99	73.15	71.90	
	Numero di colpi		19	26	30	

LIMITE DI PLASTICITA'

Prove N.		1	2	3	
Umidita"	w %	31.38	31.62	30.85	

Limite di liquidita'	W1 =	73.5 %	Limite di plasticita	Wp = 31.3 %
Indice di plasticita	1p =	42.2	Umidita* naturale	W = 38.12 %
Indice di liquidita'	II =	0.16	Indice di consistenza	lc = 0.84

Committente Dr. ROBERTO ROMAGNA

Cantiere

PADULLI

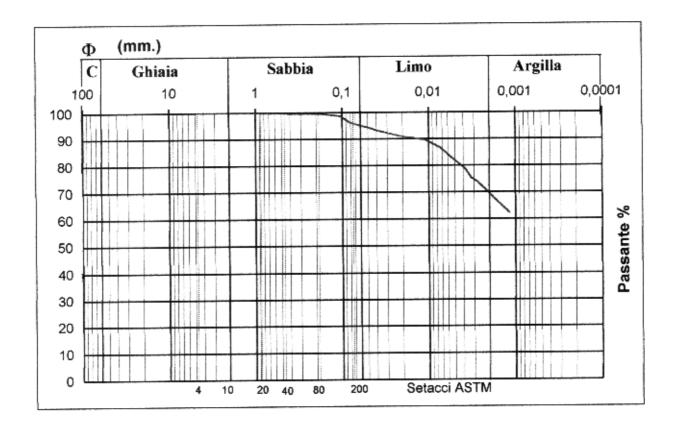
Località

RIMINI

Data

APR. 2003

Sondaggio n' 3


Campione n° 1

Prof. (m.)

2,0 - 2,5

Riferimento 3115

ANALISI GRANULOMETRICA PER AREOMETRIA

Descrizione AGI	Ciottoli	Ghiaia	Sabbia	Limo	Argilla		
ARGILLA	%	%	%	%	%		
CON LIMO							
	0,0	0,0	5,0	25,4	69,6		
Classificazione UNI-CNR 10006							
	d10 (mm)		d60 (mm)	d60 (mm)			
	l						
Grado di uniformità (d60/d10) L	d15 (mm)		d85 (mm)	d85 (mm) 0,006			

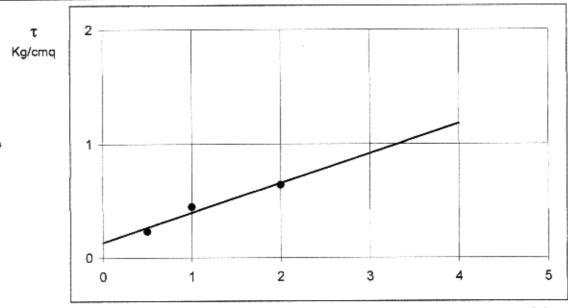
Committent Dr. ROMAGNA

Cantiere

Località Padulli - RN-

Data Mar. 2003

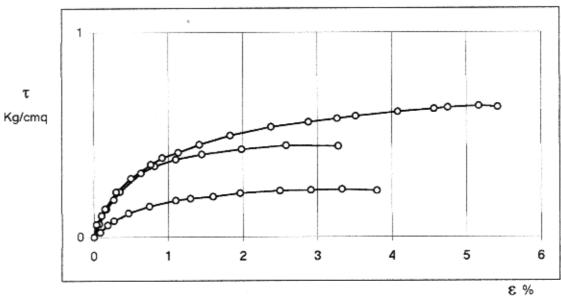
Sondaggio 3


Campione 11

Prof. (m.) 2.0 - 2.5

Riferimentc 3115

PROVA DI TAGLIO DIRETTO CASAGRANDE (C. D.)


Provino	Dimensio	ni iniziali	Consolidamento		Fase di rottura			Valori di rottu		
N.	Ø (mm)	H (mm)	dt (ore)	dh (mm)	σ	v (mm/min)	dt (h.m)	О	ε%	τ
Provino N. 1	60	22	72	0,26	0,5	0,006	7.00	0,5	3,800	0,232
Provino N. 2	60	22	72	0,55	1	0,006	7.40	1	3,283	0,447
Provino N. 3	60	22	72	1,13	2	0,006	11.50	2	5,417	0,640

σ Kg/cmq

Coesione C' = 0,14 Kg/cmq

Angolo d'attrito Ø' = 14,6 °

Dr. ROBERTO ROMAGNA

Lavoro

PADULLI RIMINI

Data

APR. 2003

Rif.

03115

GEOEMME 2

SERVIZI GEOLOGICI E GEOTECNICI CONSOLIDAMENTI

RIMINI

Sond n. 8 Camp n. 1 da m. 2.0 a m. 2.5

SOMMARIO DELLE CARATTERISTICHE FISICO-MECCANICHE

DESCRIZIONE:

ARGILLA LIMOSA GRIGIO-BRUNASTRA PER DIFFUSA PRESENZA DI MATERIALE ORGANICO. DIFFUSI INCLUSI CARBONATICI BIANCO-GRIGIASTRI MILLIMETRICI. CONSISTENTE.

CARATTERISTICHE GENERALI				LIMITI DI C	CONSIS	TENZ	Α	
Umidita' naturale	W =	37.44	%	13-14	144		67.0	Q7
Peso di volume umido	$\gamma_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$	1.82	g/cmc	Limite di liquidita'	₩!	207	63.2	76
Peso di volume secco	γd =	1.32	g/cmc	Limite di picsticita'	Wρ	==	27.7	%
Peso specifico	G =	2.731	g/cmc					
indice dei vuoti	e =	1.07		Indice di liquidita'	8	=	0.28	
Porosita'	n ==	51.56	%	Indice di plasticita	ql	_	35.5	
Umidit d' di saturazione	Wsat ≔	39.01	%	more as prosessive	112		00.0	
Grado di saturazione	Sr =	96.02	%	Indice di consistenza	lc	325	0.72	
GRANUL	OMETRI	4		RES	SISTENZ	ZA		
Sabbia (0.6 - 2 mm)	=	11.2	%	Pocket Penetrom.	au ≃1.4	- 2.1		Kg/cmq
Limo (0.002 - 0.6 mm) =	31.8	%		42			974
Argilla (< 0.002 mm)	=	57.0	%	Vane Test	Cu =0.4	- 0.6		Kg/cmq
			TAGLIC	C.D.				
angolo di attrito	φ ' \circ	- 16	5.6	Coesione	C,	##	0.16	Kg/cmq
angolo di attrito residuo	ør =	_		Coesione residua	Cr	207		Kg/cmq

OSSERVAZIONI:

Lavoro

Dr. ROBERTO ROMAGNA PADULLI RIMINI APR. 2003

Data Rif.

03115

GEOEMME 2

SERVIZI GEOLOGICI E GEOTECNICI CONSCILIDAMENTI

RIMINI

Sond n. 8

Camp n. 1

da m. **2.0**

a m. **2.5**

CARATTERISTICHE VOLUMETRICHE

						media
Diametro		cm	6	6	6	
Sezione	A	cmd	28.27	28.27	28.27	
Altezza	Н	cm	2.2	2.2	2.2	
Volume	٧	cmc	62.20	62.20	62.20	
Tara		N.	- 14	38	26	
Camp. umido + tara	X	g	124.62	130.13	128.53	
Camp. secco + tara	Y	g	93.46	99.83	97.64	
Peso tara	Z	g	13.84	15.54	14.66	
Pesb acqua	X-Y	g	31.16	30.30	30.89	
Peso camp, secco	Y-Z	g	79.62	84.29	82.98	
Umidita' naturale	Wn=100*(X-Y)/(Y-Z)	%	39.14	35.95	37.23	37.44
Peso di volume umido	γ=(X-Z)/V	g/cmc	1.78	1.84	1.83	1.82
Peso di volume secco	γd=(Y-Z)/V	g/cmc	1.28	1,36	1.33	1.32
Peso specifico	G	g/cmc	2.731	2.731	2.731	
Indice dei vuoti	e=G/yd - 1		1.13	1.02	1.05	1.07
Poresita'	n=100*e/(1+e)	%	53.13	50.38	51.15	51.56
Umidita' di sat.	₩set=n/γd	%	41.51	37.18	38.35	39.01
Grado di sat.	Sr=100*Wn/Wsat	%	94.28	96.68	97.08	96.02
Pocket penetrometer		kg/cmq		.4 - 2.1		
Thor Vane		kg/cmq	(0.4 - 0.6		

NOTE:

Lavoro

Data

Dr. ROBERTO ROMAGNA

PADULLI RIMINI

APR. 2003

Rif.

03115

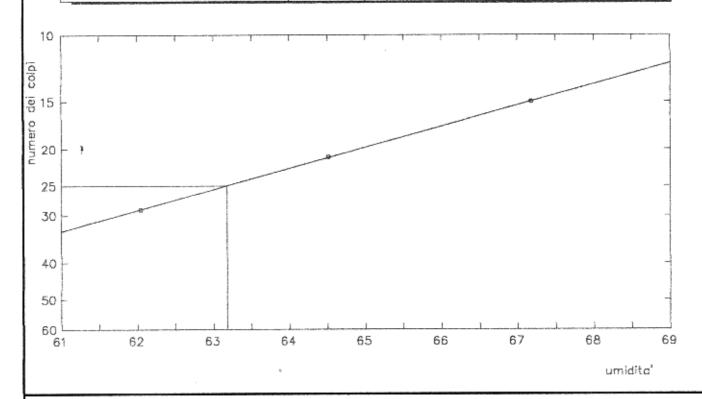
GEOEMME 2

SERVIZI GEOLOGICI E GEOTECNICI CONSOLIDAMENTI

RIMINI

Sond n. 8

Camp n. **1**


da m. 2.0

a m. **2.5**

DETERMINAZIONE DEI LIMITI DI ATTERBERG

LIMITE DI LIQUIDITA'

		AND THE RESIDENCE AND ADDRESS OF THE PARTY.		
Provo N.	1	2	3	
Umidita' W %	67.18	64.51	62.04	
Numero di colpi	15	21	29	

LIMITE DI PLASTICITA'

Prova N.	and and administrative or the second or the		1	2	3	
Umidita'	W	%	27.63	27.37	27.98	

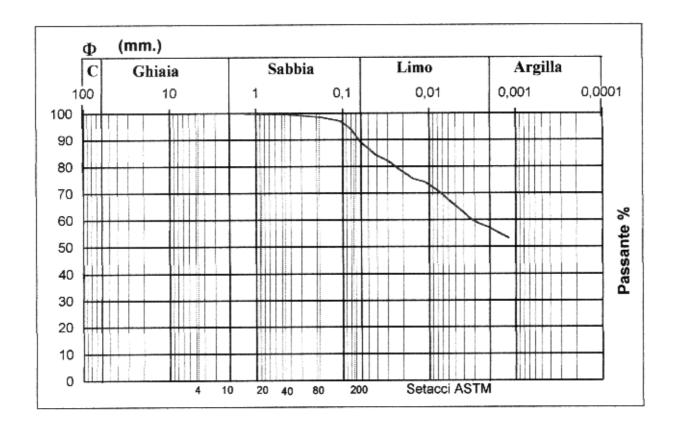
Limite di liquidita' \$1	WI = 63.2 %	Limite di piasticita'	Wp = 27.7 %
Indice di plasticita	lp = 35.5	Umidita' naturale	W = 37.44 %
Indice di liquidita'	II = 0.28	Indice di consistenza	lc = 0.72

Committente Dr. ROBERTO ROMAGNA

Cantiere PADULLI

Località RIMINI

Data APR. 2003


Sondaggio n'8

Campione n° 1

Prof. (m.) 2,0 - 2,5

Riferimento 3115

ANALISI GRANULOMETRICA PER AREOMETRIA

Descrizione AGI	Ciottoli	Ghiaia	Sabbia	Limo	Argilla
ARGILLA SABBIOSA	%	%	%	%	%
CON LIMO					
	0,0	0,0	11,2	31,8	57,0
Classificazione UNI-CNR 10006	d10 (mm)		d60 (mm)	11,2 31,8 5 d60 (mm) 0,003	
Grado di uniformità (d60/d10) L	d15 (mm) d85 (mm) 0,04				

Committent Dr. ROMAGNA

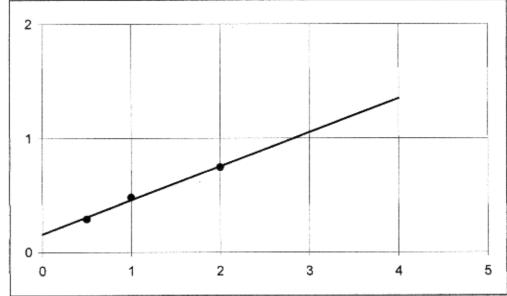
Cantiere

Località Padulli - RN-

Mar. 2003 Data

Sondaggio 8

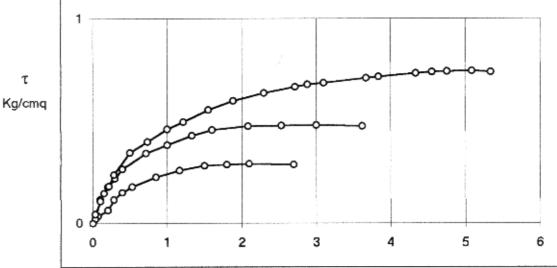
Campione 1


Prof. (m.) 2.0 - 2.5

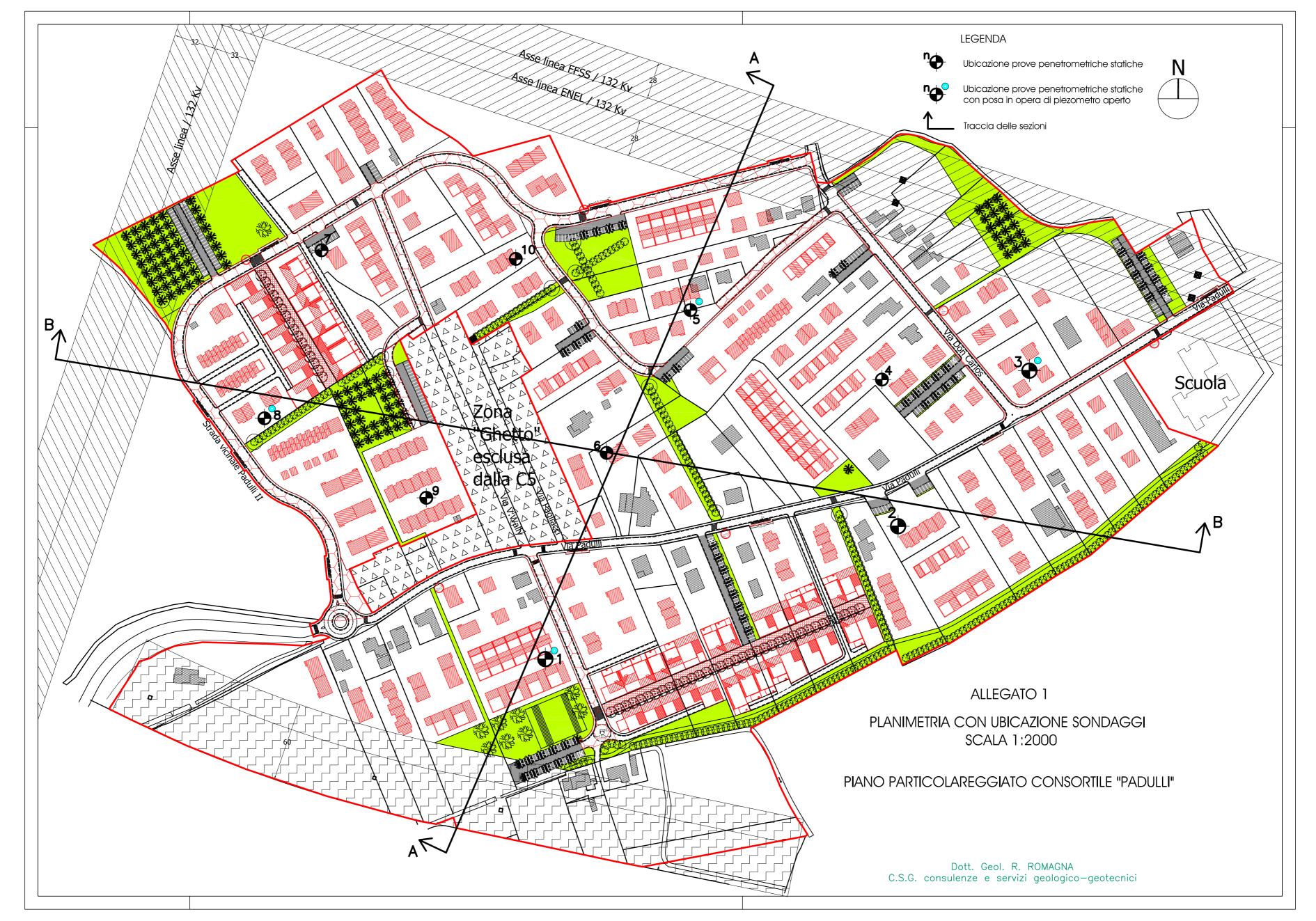
Riferimentc 3115

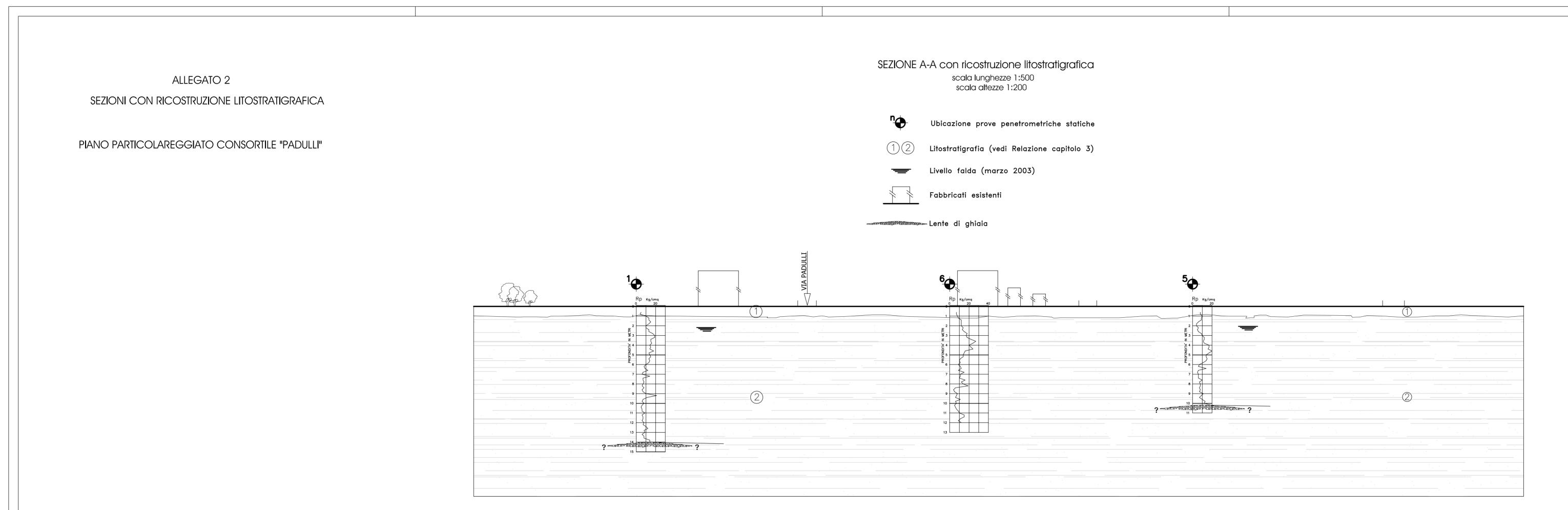
PROVA DI TAGLIO DIRETTO CASAGRANDE (C. D.)

Provino	Dimensio	ni iniziali	Consolidamento			Fase	Valori di rottu			
N.	Ø (mm)	H (mm)	dt (ore)	dh (mm)	σ	v (mm/min)	dt (h.m)	σ	ε%	τ
Provino N. 1	60	22	72	0,33	0,5	0,006	4.20	0,5	2,700	0,291
Provino N. 2	60	22	72	0,59	1	0,006	5.50	1	3,617	0,481
Provino N. 3	60	22	72	1,24	2	0,006	11.20	2	5,333	0,746

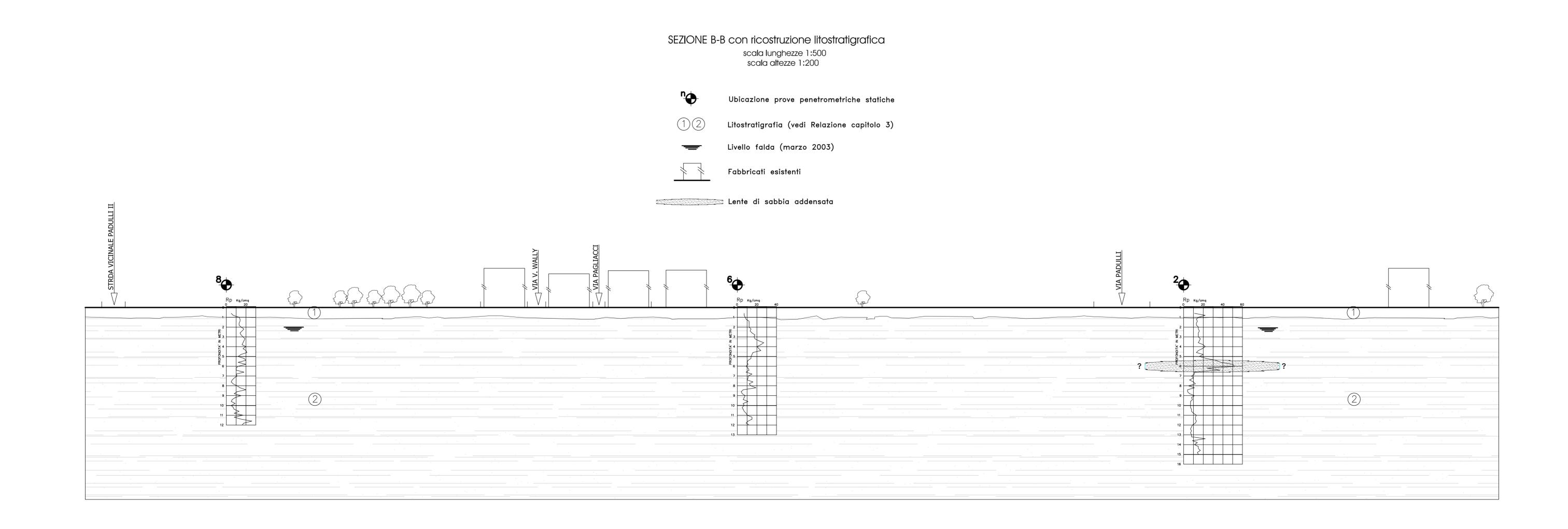


σ Kg/cmq


Coesione C' =


0,16 Kg/cmq

Angolo d'attrito Ø' = 16,6 °



ε%

Dott. Geol. R. ROMAGNA C.S.G. consulenze e servizi geologico—geotecnici

